当前位置:首页>思想汇报>最新大学物理论文参考 大学物理论文(精选5篇)

最新大学物理论文参考 大学物理论文(精选5篇)

时间:2023-10-03 18:30:52 作者:HT书生 最新大学物理论文参考 大学物理论文(精选5篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

大学物理论文参考篇一

20世纪后半叶,物理学在此前建立起来的狭义相对论、量子力学、量子电动力学、统计物理和许多重要物理实验基础上,以前所未有的速度发展着。许多物理学的分支学科,如原子、分子物理、原子核物理、固体物理、等离子体物理以及粒子物理等,都得到极大发展。与此同时,科学发展的另一个重要特征是学科间相互渗透和交叉综合。物理学和其他学科相互渗透,产生了一系列交叉学科和边缘学科,如化学物理、生物物理、大气物理、海洋物理、地球物理等等。物理学的新概念、新理论和新的实验方法向其他学科转移,促成各学科的发展并成为其组成部分。

20世纪后半叶,新技术特别是高新技术发展之快也是前所未有的。高技术包含的科学知识高度密集,综合性极高,如红外和红外成像技术、激光技术、计算技术、信息技术、航天技术、生物技术等等,都无一例外地与物理学等学科的基本概念、基本理论和基本实验方法密切相关,其发展在很大程度上依赖包括物理学在内的各学科的发展。

现代军事科学技术的知识密集性、综合性极高,处于科学技术的前沿,近几年来的局部战争向人们展示,现代战争在相当大程度上是高新技术的较量。现代军事科学技术离不开物理学和物理学的新成就,如红外夜视、激光制导、激光雷达、三相弹等都与物理学原理和物理学实验技术密切相关。

这一切都表明,在科学技术发展的进程中,物理学不但在历史上曾经是处于主导地位的,在20世纪是处于主导地位的,而且毫无疑问,21世纪物理学在科学技术发展中也必将处于主导地位,它的作用将会更加突出。

大学物理课是一门重要基础课,它的作用一方面是为学生较系统地打好必要的物理基础,另一方面是使学生初步学习科学的思维方法和研究方法,这些都起着增强适应能力、开阔刘义洪盈赘大争物双教争敬沮思路、激发探索和创新精神、提高人才素质的重要作用。学好大学物理,不仅对学生在校学习十分重要,而且对学生毕业后的工作和在工作中进一步学习新理论、新知识、新技术、不断更新知识,都将发生深远的影响。物理课的这一作用,特别为许多专家、教授、高级工程技术专家所强调。

我国工科大学物理的学时一直少于理科。因此,目前实施的教学内容,主要是传统物理课内容在给定学时范围内一再精选后形成的。总的来讲,工科大学生的物理基础较薄弱,物理知识面也较窄,特别是近代物理和现代工程技术有关的物理基础和现代工程技术方面的新知识更显薄弱。如我们的课程基本要求中没有物性学、分子、原子核、粒子等内容;没有偏振光干涉、核磁共振、穆斯堡尔效应等内容;量子物理、统计物理等近代物理基础的基本概念、基本理论和知识甚为薄弱。这些内容,工科一般专业在后续课中多不再涉及,而它们恰恰是当今学习新理论、新知识和新技术所要涉及的,有些甚至已成为当今高新技术的组成部分。在这个意义上讲,大学物理课内容“老的多、新的少”。因此,更新内容,加强现代物理和现代工程技术有关知识,特别是有关基础知识,是工科物理教学改革必须面向的首要问题。

工科大学物理课程的教学改革是很复杂的,也是很困难的,不可能一嗽而就。应该坚持以下原则:不应改变物理课作为基础课的地位和作用,应着力研究现代高级工程技术人才应具备什么样的物理基础;要重点研究如何处理好经典物理和近代物理及有关近代内容的关系;应在培养学生科学思维方法和分析问题、解决问题能力上加大力度,与研究教学内容改革的同时,还必须系统地研究教学方法、考试方法等教学环节的改革。

工科大学物理课内容改革的重点在于加强物理学基础(包括经典物理基础和近代物理基础),同时适当地介绍反映现代物理和现代工程技术的新知识,扩大学生的知识面,在整个教学过程中提高学生分析及解决问题的能力和独立获取知识的能力。由于工科物理课程教学时数少,只靠课程内容和体系本身改革回旋余地小,改革要将课内课外、理论教学与实验教学、课与课间关系诸方面综合考虑。

(一)课程教学内容改革,应以物理课程教学基本要求为依据。在保证经典的前提下,进一步精选经典物理内容,突出教学内容及能力培养,避免过分强调系统性和严密性等,在整个经典物理教学过程中应贯彻加强近代思想;在近代物理基础的基本要求部分,加强量子力学和统计物理基础知识,以利于学生在校和离校后进一步学习新理论、新知识和新技术;加强现代工程技术物理基础专题,这部分内容应侧重物理原理,而不要停留在科普水平上,上述三部分内容的讲授学时,分别约占总学时的58%、27%和15%.

(二)开设物理类和技术类专题选修课(或讲座).物理类选修课:如现代物理导论、混沌、原子和分子物理、核物理、天体物理、等离子体物理、凝聚态物理、嫡和信息、傅里叶光学、非线性光学、非线性力学等、技术类选修课:如现代工程技术专题、激光技术、光散射技术、全息技术、穆斯堡尔谱学、核磁共振技术、薄膜技术、换能器、红外技术、低温和超导等。选修课应着重物理概念、物理思想和方法,不追求数学严密性,不过分强调系统性和完整性。

(三)教学手段改革是教学改革的重要组成部分。粉笔加教鞭不适应改革的需要已经成为人们的共识。近几年来,有许多院校在多媒体辅助教学上做了大量的工作。实践证明,把多媒体技术应用于教学可以改变信息的包装形式,在计算机上把图、文、声、像集成在一起,提高教学内容的表现力和感染力,能调动学生主动运用多种感观积极参与多媒体的活动,使学生由知识的被动接受转为主动发现。同时,这也为教学研究提供了有力工具,为教学的顺畅实施与高效提供了可靠的技术保障。在提高认识的基础上,加大这方面的资金投人,多媒体辅助教学必将成为21世纪教学手段的主体。而多媒体辅助教学软件也应向智能化方向发展。1997年n月6日,中国物理学会正式宣布中国物理教育网建立。这就为网上教学和科研提供了方便,物理教育工作者应充分利用这一有利条件,从网上获取信息服务于教学。名校、名师更应在网上传播自己的教法和经验,使大家受益。

物理学的迅速发展,不断在广度和深度上揭示物质结构和物质运动的普遍规律。在教学实践中,我以物理课程教学基本要求为依据,在保证经典的前提下,把现代物理专题中的部分内容穿插安排在授课之中,学生反映很好。如在讲完振动与波后,由单摆的线性振动自然地过渡到单摆的非线性振动,从而引出“棍沌”,接着向学生指出了普遍存在的混饨现象,并简要介绍了混沌理论的发展及意义、激发了学生浓厚的学习兴趣,另外,我还编制了部分多媒体辅助教学软件以用于教学。如在驻波一课中,用形象、直观的动画把驻波的成因生动有趣地展现在学生面前,提高了教学质量和时效。

大学物理论文参考篇二

【摘 要】物理是一门基础自然科学,大学物理课程是理工科学生的一门重要的基础课程,本文主要论述了大学物理教学目前遇到的几个问题,阐述了开展大学物理教学的必要性,以及现状况下大学物理教学应该采取的一些的措施。

【关键词】大学物理;教师;必要性

0 引言

我就职于一所农业院校,执教大学物理,每次开学的时候经常会遇到学生提的几个问题,有的同学说,我中学不喜欢物理,现在还不是很喜欢怎么办?第二,力学,热学,电学,光学……这些章节我们初中学习过,高中学习过,现在怎么还是学习这些。

第三,非物理专业的大学生为什么要学习大学物理这门课。

下面就关于这几个方面的问题来探讨一下大学物理的必要性。

1 大学物理课程的必要性

物理学的研究内容是自然界的最基本的物质的结构、最常见的相互作用、最基本的运动规律。

物理学是是人类探索自然奥秘的过程中逐步形成的科学。

它是自然科学、科学技术、甚至是高新技术的重要理论基础。

而且物理学和人类的生活息息相关。

这从物理学的分类也可以看出。

物理学按研究内容可以分为力学、热学、电磁学、光学、量子力学等。

物理的研究内容包括很多:物理现象、物质的结构物质相互作用以及运动规律。

物理学的研究对象既包括宇宙中的星系及星系团,也包括小到肉眼看不到的微观粒子。

物理学讲授的是一种思想,因此大学物理研究性教学强调在讲授知识的同时,也要培养学生科学的学习方法,以及分析问题解决问题的能力。

著名物理学家费曼说科学教育人们如何去思考事物,作出判断,如何区别真伪和表面现象。

物理概念和物理规律的发现与发展过程对培养学生的思维有很大的帮助。

对于理工科甚至于文科学生来说,大学物理课程既是其他课程的基础,也是其自然科学基础。

因此,大学物理实施研究性教学是一个必然趋势。

物理学和整个社会的进步息息相关,物理的每一次重大的发现和突破都引发了社会的新领域、新方向的发展。

例如牛顿力学推动第一次工业革命,并且延伸了人的肢体功能。

从此以后社会进入机械化时代。

由于电磁学理论的存在,因此发电机和电动机的发明加速了机械能、原子能、热能、光能和电能之间的相互转化,使生产力迅速发展,社会进入了电气化时代,第二次工业革命胜利完成。

最后,相对论和量子力学的存在推动了第三次工业革命,人类从此进入了信息时代。

物理学现在不是单独的闭门造车,化学物理,地球物理学,经济物理学,物理化学,生物物理,医学物理,天文物理,甚至于经济物理都是用物理学的概念、方法和理论来定量地研究其他领域中内存在的复杂关系。

中学已经学过物理,而且大学物理的许多目录章节和中学的教材雷同这个原因是什么?我们知道,物理学的好多理论是用公示定量的来描述世界的,因此如果没有数学的基础就谈不上了解物理。

物理和数学是相辅相成的。

物理学的语言是数学,许多物理思想都是用数学公示体现出来的,例如牛顿力学、安因斯坦质能方程,迪拉克方程……学生高中受到所学数学的限制,因此一些公示的表示也仅仅局限于初等数学方法。

但是对于大学物理来说,由于高等数学的学习,学生会从更高的层次来对大学物理课程进行学习以及练习。

例如平均速度,中学的表达式为,v=s/t。

而大学物理的引入则是v=dr/dt。

对于中学物理来说,因为要求不同,因此主要是以课堂讲授为主,物理实验课时相对比较少。

因此学生在聆听的过程中很容易被生局限在教师所传授的课本知识的范围。

但是,我们知道,物理学是建立在实验基础上的,一个新的物理理论的正确与否最终要以其看其是否能经得起实验检验。

而目前的大学物理是理论和实验相结合,而且大学物理实验占很大的。比重。

这种布局既有利于提高学生观察能力,有利于提高学生分析能力,有利于提高学生的动手能力,有利于提高学生理论指导实践的能力,有利于激发学生创新意识,有利于提高学生创新潜力等。

2 大学物理要注意的问题

上述主要阐述了大学物理学的必要性,对于教师来说,对于大学物理学的授课也要注意以下几点。

首先物理学体系庞大,内容丰富。

因此在有限的大学物理课时里,不可能做到面面俱到。

因此授课时候要求教师不要单纯强调物理内容的系统性和完整性,把讲授的知识局限在在一个范围内,使教学内容照本宣科。

要因专业施教,要因学生施教。

不同专业讲授内容不一样。

这就要求教师不但要根据不同的专业来制定不同的授课计划,而且要应针对不同的要专业求对教学大纲进行优化,突出与学生专业紧密链接的部分。

大学物理论文参考篇三

学习高中物理从某种意义上来讲主要是建立基本物理模型并分析,应用,提升的过程。教师在教学中能有效的提高基本物理模型的教学有效性,学生能在学习中提高基本物理模型学习和应用的有效性,那么在学习和理解高中物理内容中将会取得事半功倍的效果。

物理模型建模思想

物理是一门以科学实验为基础的自然科学,从伽利略开创近代物理研究开始,实验验证法就是物理学科研究的重要手段,同时根据实际实验的情况进行合理地,科学的理论推演,从而得到正确的结论是物理学研究的根本方法。而物理教学中的基本建模思想正是在这种研究思想的指导下提出的通过一定的抽象思维,适当地对物理研究对象进行理想化设想形成物理模型,进而解决物理问题的一种方法。有效地掌握,合理地应用基本物理模型是提高物理学习效率和提升考试效益的有效方法。尤其是现在课程改革后所使用的教科版物理教材,更加注重对物理基本模型和基本建模思想的培养和应用。所以加强物理基本模型和基本建模思想的培养是对学好物理大有益处的。

物理学是与实际联系很密切,且理论性、系统性很强的学科,其所研究的对象宽泛而繁杂,往往研究对象并不是以一个孤立系统而存在,同时还有可能存在许多的外部影响。为了方便进行物理的理论分析,要将一些对研究会造成影响的因素忽略。当然不能忽略问题研究的本质。这就要求在研究问题时,要根据本质,分析其影响因素的主次,进而抛去次要因素,抓住主要因素,从中抽象出研究对象的简化的理想的物理模型,这样才能更加充分的抓住问题关键,这就是物理建模。

建立基本的物理模型,应该具有三个特点,即代表性、方法性和美学性。

基本物理模型的代表性,是从许多的物理对象中经过有针对性的忽略外部次要因素后保留下来的,抓住了研究对象的本质属性和内在联系,因此每个物理模型都具有非常典型的代表性。例如运动学中的质点,电学中的点电荷,试探电荷等等。

基本物理模型的方法性,是表明每一个物理模型的确立不是凭空得出的,而是由大量的物理研究,数学推演证明,经过反复思考完善才最终形成的,物理模型反映了物理学科的研究方法和数学基本分析思维方式。例如匀速直线运动,匀变速直线运动,匀速圆周运动,平抛运动,自由落体运动,竖直上抛运动,等等就是体现了物理基本模型的方法性。它代表了一种对这种运动形式的基本的思维方式和解决方法以及数学运算过程。在学习此类型的物理问题时,只要确定了物理过程属于哪一种物理模型体系,那么在理解,分析,运算是都可以进行程式化的分析。应用基本物理模型其本质也是一种分析探究的过程,同时也是检验基本物理模型适用范围和是否正确的过程,还是物理思维不断产生,巩固加强和固化的过程。

基本物理模型的美学性,主要强调了物理基本模型表达形式的简洁,对称和优美。现行高中教科版教材中所提到的基本物理模型都是非常简单但又准确地反映了研究对象的本质状况。通过物理模型能够简明扼要地揭示物理问题,体现了物理学科的形式美。例如我们学习的匀变速直线运动的相关公式,很简洁、对称,当看见这些公式后给人以一种特定的物理美感。再如,机械能守恒定律(能量守恒定律),库仑定律,万有引力定律,楞次定律,焦耳定律,牛顿三大定律,开普勒行星三大定律都具有很强的简洁流畅的物理美感。

高中物理内容抽象、逻辑性强是其难度所在,如果单纯的进行知识灌输,学生很难理解和掌握,而在学习中逐渐的建立物理模型,使得难以琢磨的物理理论变得实在,变得可以想象,那么对于物理的学习就起到的很大的帮助。

高中物理建模,将解题过程化繁为简,降低了物理解题难度,增强了学生对物理学习的兴趣和自信。同时正确建立物理模型的过程本身,也是不断提高学生自身思维品质的过程。通过物理建模,能够有效提高学生的综合能力。例如平抛运动。我们知道平抛运动其本质就是在初速度方向上的匀速直线运动,在与初速度垂直方向上的匀加速直线运动的合成。电场中,在研究带电粒子在匀强电场中的偏转运动时,就可以很快的发现这个运动和平抛运动具有十分相似的受力特点和运动情况,那么就将平抛运动的受力分析和运动分析,以及相关的数学运算都进行套用。

再如万有引力定律在天体运行中的应用,只要理解好“核星—绕星系统”,那么在求解过程中就直接应用圆周运动的基本规律和万有引力定律相结合就可以较为顺利的解决。带电粒子在匀强磁场中的运动同样是匀速圆周运动的应用,只是向心力由洛伦兹力提供。

通过建立模型,可以让学生充分体验到物理探索过程中的困难,磨炼学生的学习意志,同时建立模型的过程也是学生掌握物理研究方法的一种手段,有利于培养学生运用科学抽象的思维方法来处理实际问题的能力。其实,应用基本物理模型的过程也是一种发现和探索的过程。

[1]《物理教学思维方式》.朱龙祥。首都师范大学出版社

[2]《研究型课程》.应俊峰。天津教育出版社

[3]《中学物理教学建模》.苏明义。广西教育出版社

大学物理论文参考篇四

本文主要分析了初中物理教和学中“设疑”应该注意的问题,同时阐述了“设疑”的有效方式,最后总结了“设疑”对初中物理学习的重要性,旨在促进这种教学方式的推广,使学生学习不断进步。

初中物理;教和学;设疑

1.1创造设疑的情境

对于初中的物理,逻辑思维占有很重要的比重。初中的学生往往会受到奇特新颖的事物的影响,并激发学生的创造力。研究表明,一定的问题情景能够促进学生产生学习的愿望。因此,在教学的过程中,老师应该注意根据教学的目标设置一定的问题情景。同时,老师还要清楚学生的爱好习惯,使得设疑的情景更加独特新颖,吸引学生参与进来。设疑还要具有一定的目的性,应该主要围绕教学的内容展开,不能与所学的知识不相关,实现促进学生学习的根本目的。

1.2创造民主的课堂气氛

老师在教学中,要注意角色的转换,这样更有利于学生发现问题、分析问题和解决问题。传统的教学方式中,往往是老师一个人在进行知识的讲授,没有注意到设疑的重要性,长时间的教学中没有向学生提出问题,形成很好的互动,就会导致学生的学习的自主性降低。因此,要想在教学中设疑能够有良好的效果,就要为学生创造一个平等、自由、轻松的课堂气氛,让学生能够有心理安全感,从而为学生提出问题创造一个良好的平台。同时,老师还要对善于提出问题的学生进行鼓励,通过正确的引导促进学生学习主观性的发挥。

1.3引导学生思维的发散

学生在学习中发现问题是一个成长的过程,因此,需要老师进行正确的引导。在教学中,老师要带动学生一起发现问题、提出问题,训练学生打破砂锅问到底的质疑精神。同时,老师也要注意提出问题的难度和提出问题的方式,不能设置太难或太多的问题对学生不断追问,这样会给学生形成很大的压力,要通过正确的方法引导学生思维。

2.1“设疑”的情境要合适

设疑能够满足学生的好奇心,但是,设疑的。情景要具有趣味性和探索性,才能不断激发学生的学习。例如,在学习惯性的知识点时,老师可以用生活中的例子进行引导:如果不小心踩到西瓜皮,身体会想后倾倒,但是如果在坐车时突然刹车,身体会向前倾倒。通过这两个常见事例的对比,学生就会在心中产生疑问,求知欲就会促使学生有效进入到对惯性这一知识点的思考。再比如,在学习能量转换的知识点时,可以创造一些开放性的问题,比如不同的能量是如何产生与转换的,能量的合理利用等问题,通过情境的激发,促进学生知识的延伸。

2.2“设疑”的目标要明确

从教育的目标来看,我们希望设疑能够促进学生的学习进步,引发学生思维的活力,教学应该是活的,学生才能够灵活地进行知识的迁移和运用。学生要能够将书本上的知识运用到实际的生活中,因此,设疑的取材也要尽量来源于生活,还原于生活。例如,在学习热现象时,老师可以用实际的生活进行引导:开水冒出的“白气”和冰块冒出的“白气”有什么差异,二者是否都是由于热现象导致的。在没有学习知识之前,学生可能会对这两种想象有一定的误解,通过设疑的方式能够纠正学生的错误,让学生知道,一种是由于热想象产生,一种是由于空气中的水分受冷液化产生。

2.3“设疑”的时机要合适

在物理的教学中,设疑的时机是很重要的,如果没有正确把握,就容易造成适得其反的效果。如果在课堂开始之前进行适当的问题导入,引导学生产生思考进入到学习状态,例如,在学习动能这一章节时,可以提出问题,水沸腾时,水壶的盖子会发生跳动,是什么导致这样的现象发生的。学生一旦激发了好奇心,就会主动参与到学习中来。

2.4“设疑”的方式和适当

在初中物理知识的学习中,老师应该要重视知识的归纳和总结,学生在具有规律性的知识结构中往往更容易掌握和记忆。因此,设疑还要具有归纳性,让学生进行知识的反思。同时,设疑还要具有创新性,在一个问题结束之后,可以适当地提出新问题,对所学的知识进行拓展。例如,在学习滑动摩擦力时,老师也可以进行设疑:在同样的情况下,拉空车会比装满货物时更加轻松;在推箱子时,将两个箱子并排放置会更难推动,这是为什么?通过问题的分析和对比,学生就会发现,滑动摩擦力和质量、接触面积有关。这些设疑的难度不大,学生根据自己所学的知识就能解决,在思考的同时还有利于学生对知识点的记忆和掌握。

“设疑”在初中物理的教学中,能够有效促进学生对知识进行深入分析,提高学生的创造性。因此,在教学中,老师应该合理运用“设疑”的方法,培养学生提出问题、分析问题和解决问题的能力。

[1]李志军。浅谈物理思维程序的训练[j].学周刊,2015,18:163.

[2]赵晋春。初中物理课堂教学中利用生活现象创设问题情境的应用研究[d].内蒙古师范大学,2011.

[3]赵鑫。初中物理教师课堂提问的调查研究[d].西北师范大学,2014.

[4]黄海旦。浅谈初中物理教学中学生思维能力的培养[d].赤子(中旬),2013,10:1.

大学物理论文参考篇五

电磁运动是物质的又一种基本运动形式,电磁相互作用是自然界已知的四种基本相互作用之一,也是人们认识得较深入的一种相互作用。在日常生活和生产活动中,在对物质结构的深入认识过程中,都要涉及电磁运动。因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。

关键词:电磁学,电磁运动

17xx年法国物理学家库伦用扭秤实验测定了两个带电球体之间的相互作用的电力。库伦在实验的基础上提出了两个点电荷之间的相互作用的规律,即库仑定律:

在真空中,两个静止的点电荷之间的相互作用力,其大小和他们电荷的乘积成正比,与他们之间距离的二次方成反比;作用的方向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。

这是电学以数学描述的第一步。此定律用到了牛顿之力的观念。这成为了牛顿力学中一种新的力。与驽钝万有引力有相同之处。此定律成了电磁学的基础,如今所有电磁学,第一必须学它。这也是电荷单位的来源。

因此,虽然库伦定律描述电荷静止时的状态十分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现几乎近两百年。我们现在用的电器,绝大部份都靠电流,而没有电荷(甚至接地以免产生多余电荷)。也就是说,正负电仍是抵消,但相互移动。——河中没水,不可能有水流;但电线中电荷为零,却仍然可以有电流!

法国物理学家安培(andremarieampere,1775—1836)提出:所有磁性的来源,或许就是电流。他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。五个月内,便证明了两根通电的导线之间也有吸力或斥力。这就是电磁学中第二个最重要的定理“安培定律”:

两根平行的长直导线中皆有电流,若电流方向相同,则相吸引。反之,则相斥。力之大小与两线之间距离成反比,与电流之大小成正比。

以后,安培又证实了通了电流的筒状线圈之磁性,与磁铁棒完全一样。故他提出假说:物质之磁性,皆是由物质内的电流而引起的。这使磁性成为电流的生成物——他后来被誉为“电磁学”的始祖(电与磁从此在物理中是分不开的)。他的名字,也成了电流的单位。

安培这个发现,在应用上极为重要。它提出了用电流而发出动力,使物体动起来的方法,准确而可靠。因此,它是电流计(以及各种电表)、电马达、电报,电话之原理。特别是电报,在18xx年以后就成了新兴事业,大赚其钱。

安培定律之后,电磁学理论与应用之发展可以说是风起云涌。

法拉第早年是达维(18xx年发现金属钠和钾)的助手,他对电解有很周密的研究。他发现了通电量与分解量有一定的关系,并且与被分解的元素之原子量有一定的关系。由此,可以大致导致两个结论:

(1)每个原子中有一定的电含量。

(2)原子在化合时,这些电量起了作用,而通电可使化合物分解。因此,牛顿寻求的分子中的化合之力,必与电有关。此想法在18xx年由达维提出,法拉第进一步加以验证,至今尚是正确的。

牛顿的万有引力定律提出之初,受到很多质疑。其中之一是:很多人认为,两个相距遥远的物体,无所媒介,而相互牵引,是不可置信的。但是由于万有引力之大获成功,这种超距力的概念,不久便被普遍接受了。电磁学中的库伦、安培等力之观念,起始时亦是这种超距力。

在牛顿前一百年的英国人吉伯特是伊利莎白一世的御医。他的一本”论磁”是有系统地研究电磁现象的第一本书(大部份说磁,因其在当时比较有用),其重要性是扬弃了磁性之神秘色彩,以一种客观的自然现象来描述之。吉伯特的“论磁”中曾提出’力线’的观念。这就是说:磁性物质发出一种‘力线’,其它磁性物质遇到了这‘力线’便受到力之作用。这样就避过了‘超距力’的‘反直觉’。

(a)力线不断、不裂、不交叉打结,但可以有起头与终止。例如:电场之力线由正电荷发出,由负电荷接受。力线的数量与电荷之大小成正比。

(b)力线像有弹性的线,在空中互相排斥又尽量紧绷。其密度与施力之大小成正比。

(c)力线有方向性,电力线的方向是对正电荷的施力方向(负电受力方向相反),在磁力线是对‘磁北极’的施力方向。

法拉第则更进一步,提出了场的概念:空中任意一点,虽然空无一物,但有电场或磁场之存在,这种场可使带电或带磁之物质受力。而’力线’则是表现‘场’的一种方式。但是,法拉第的‘场’观念,当时也受到强烈的质疑与反对。最重要的理由是这观念不及‘超距力’之精确。把‘场’观念精确化,数学化的是后来的麦克斯韦。

法拉第发现,一个移动的磁铁或通了电流的筒状线圈,也可以使附近的线圈中,产生感应电流——这就是电磁学中第三个最重要的法拉第定律。

这个定律与库伦、安培都不同;它是动态的。第一线圈中的电流变化越快,第二线圈中的电流越大。或磁铁、有电流的筒状线圈,移动得越快,第二线圈中的电流也越大。这就是发电机的原理。

与法拉第之实验天才对比,麦克斯韦则是长于数学的理论物理学家的典型。他生于苏格兰的一个小康之家。自幼便充份显示了数学之才能。他先在阿伯丁大学任教,以后转往剑桥。在物理中,今日麦克斯威之重要性,几可与牛顿、爱因斯坦等量齐观。但生前,麦克斯威并不受其故乡苏格兰之欢迎。他在剑桥大学则受到重用。

他在18xx年,发表了《法拉第之力线》一文,受到将退休的法拉第的鼓励。18xx年,他由理论推导出:电场变化时,也会感应出磁场。这与法拉第的电感定律相对而相成,合称电磁交感。此后他出版了《电磁场的动态理论》,《电磁论》,其重要性可以与牛顿的《自然哲学的数学原理》相提并论。

通过了数学中的向量分析,麦克斯韦写下了著名的麦克斯威方程式,不但完整而精确地描述了所有的已知电磁场之现象,而且有新的预言。其中最重要的是电磁波:

(1)由于电磁交感,故电磁场可以在真空中以波的形式传递。

(2)计算之结果,这波之速度与光速一致,故光是一种可见的电磁波。

(3)这种波亦携带能量、动量等,并且遵从守恒律。

“光是一种电磁波!”这句话现在是常识,在当年则骇人听闻。麦克斯韦只靠纸上谈兵,就做大胆宣言,也难怪当年根本不信有电磁波的人居多。但他自己却信心满满。有人告诉他有关的实验结果,不完全成功,他毫不在意。他有信心他的理论一定是对的。——以后的理论物理学家很多人就学了他这种态度。

德国人赫兹是第一个在实验室中证明电磁波存在的人。他先把麦克斯韦的电磁学改写成今天常见的形式。然后在1886—18xx年,做了一系列的实验,不但证明电磁波存在,而且与光有相同波速,并有反射、折射等现象,也对电磁波性质(波长、频率)定量测定。当然,也同时发展出发射、接收电磁波的方法——这是所有无线通讯的始祖。

麦克斯威的电磁理论,成为现在理工科的学生都要修的电磁学。简单的说来,电磁学核心只有四个部分:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。

这套电磁理论,在物理学中,是与牛顿力学分庭抗礼的古典理论之一。如果以应用之广,经济价值之大而言,犹在牛顿力学之上。但也不能忘记,如果没有牛顿力学中力之概念,电磁学也发生不了。电磁学中的各定律,也无法理解。因此,普通物理中,也必然先教力学再教电磁。

力学与电磁学被称为古典理论有两层意思:

(1)它可以自圆其说,没有内在的矛盾。

(2)但是到了廿世纪量子理论确立后,它们被修改了。力学后来被修改为量子力学,电磁学被修改为量子电动力学。然而,在原子之外,这两个古典理论仍是非常精确,故理工学生仍然不得不学它们。

回顾电磁学的历史,是很有趣的。一直到十八世纪中,电磁似乎只是一种新奇的玩具——科学与艺术一样,起步时都有游戏性质——但到了后来,其产生的结果,竟然改造了世界。当然,并不是所有科学工作都有这样大的`威力。也有些科学的成果令人不敢恭维。然而,科学有这样的可能,却是我们不得不重视科学研究的终极原因。

1、倪光炯,李洪芳,近代物理,上海科学技术出版社,(1979),393。

2、人民教育出版社物理室编,高级中学课本,物理(第二册),人民教育出版社,(19xx年第二版),266。

相关范文推荐