当前位置:首页>心得体会>最新纳米材料心得体会(精选7篇)

最新纳米材料心得体会(精选7篇)

时间:2023-09-21 17:59:11 作者:BW笔侠 最新纳米材料心得体会(精选7篇)

每个人都有自己独特的心得体会,它们可以是对成功的总结,也可以是对失败的反思,更可以是对人生的思考和感悟。我们应该重视心得体会,将其作为一种宝贵的财富,不断积累和分享。下面是小编帮大家整理的心得体会范文大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

纳米材料心得体会篇一

[摘要]纳米医学是纳米技术与医药技术结合的产物,纳米医学研究在疾病诊断和治疗方面显示出了巨大的应用潜力。近几年,纳米技术突飞猛进,作为纳米技术的重要领域的纳米生物工程也取得了辉煌的成就。本文从纳米医学、纳米生物技术和纳米生物材料三个方面,讲述了纳米生物工程的重大进展。本文就纳米诊断技术、组织修复和再生医学中的纳米材料、纳米药物载体、纳米药物等方面的研究现状与进展进行综述,并探讨纳米医学的发展前景。

1、跨世纪的新学科——纳米科技

所谓/纳米科技,就是在0.1~100纳米的尺度上,研究和利用原子和分子的结构、特征及相互作用的高新科学技术,它是现代科学和先进工程技术结合的产物。1990年7月,第一届国际纳米科技会议的召开,标志着纳米科技的正式诞生。时至今日,纳米科技涉及到几乎现有的所有科学技术领域。它的诞生,使人类改造自然的能力直接延伸到分子和原子。它的最终目标,是人类按照自己的意志操纵单个原子,在纳米尺度上制造具有特定功能的产品,实现生产方式的飞 跃。目前,纳米科技已经取得一系列成果,正处于重大突破的前夜。研究者认为,这一兴起于本世纪90年代的纳米科技,必将雄踞于21世纪,对人类社会产生重大而深远的影响。

2、纳米医学的提出

纳米医学的形成除了纳米技术之外,其医学本身也应具有可应用纳米技术的客观基础和必要条件。客观基础是指,像其他物质一样,医学研究的主体———人体本身是由分子和原子构成的。实现纳米医学的必要条件是,要在分子水平上对人体有更为全面而详尽的了解。 随着现代生物学和现代医学的不断发展,人类在生物学和医学等领域的研究内容已开始从细胞、染色体等微米尺度的结构深入到更小的层次,进入到单个分子甚至分子内部的结构。这些极其微细的分子结构的特征:尺度空间在0.1-100 nm,属于纳米技术的尺度范围。研究这些纳米尺度的分子结构和生命现象的学科,就是纳米生物学和纳米医学。纳米医学是一门涉及物理学、化学、量子学、材料学、电子学、计算机学、生物学以及医学等众多领域的综合 性交叉学科。freitas曾给纳米医学下过一个较详细的定义:他认为,纳米医学是利用人体分子工具和分子知识,预防、诊断、治疗疾病和创伤,劫除疼痛,保护和改善人体健康的科学和技术。目前的纳米医学研究水平还处于初级阶段,当然,由于各国科学工者的不懈努力,纳米医学研究领域已初露曙光,有部分研究成果已开始接近临床应用。

从定义来看,纳米医学可以分为两大类,一是在分子水平上的医学研究,基因药物和基因疗法等就是典型体现;二是把其他领域的纳米研究成果引入医学领域,如某种纳米装置在医疗和诊断上的应用。纳米医学的奥秘在于,可以从纳米量级的尺度来进行原来不可能达到的医疗操作和疾病防治。当生命物质的结构单元小到纳米量级的时候,其性质会有意想不到的变化。这种变化既包括物质的原有性能变得更好,还可能有我们所意想不到的性能和效益,从而用来治病防病。

3、纳米技术的医学应用 3.1 诊断疾病

这是纳米医学中的一个非常活跃的领域,适时准确地释放药物是它的基本功能之一。科学家正在为糖尿病人研制超小型的,模仿健康人体内的葡萄糖检测系统。它能够被植入皮下,监测血糖水平,在必要的时候释放出胰岛素,使病人体内的血糖和胰岛素含量总是处于正常状态。美国密西根大学的博士正在设计一种纳米/智能炸弹,它可以识别出癌细胞的化学特征。这种智能炸弹很小,仅有20nm左右,能够进入并摧毁单个的癌细胞。

德国医生尝试借助磁性纳米微粒治疗癌症,并在动物实验中取得了较好疗效。将一些极其细小的氧化铁纳米微粒注入患者的肿瘤里,然后将患者置于可变的磁场中,氧化铁纳米微粒升温到45~ 47度,这一温度可慢慢热死癌细胞。由于肿瘤附近的机体组织中不存在磁性微粒,因此这些健康组织的温度不会升高,也不会受到伤害。科学家指出,将磁性纳米颗粒与药物结合,注入到人体内,在外磁场作用下,药物向病变部位集中,从而达到定向治疗的目的,将大大提高肿瘤的药物治疗效果。

纳米药物与传统的分子药物的根本区别在于它是颗粒药物。广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等。二是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。

3.2.1 纳米药物

直接以纳米颗粒作为药物的应用之一是抗菌药物。纳米抗菌药物具有广谱、亲水、环保、遇水后杀菌力更强、不会诱导细菌耐药性等多种性能。以这种抗菌颗粒为原料,成功地开发出了创伤贴、溃疡贴等纳米医药类产品。例如,纳米二氧化钛树脂基托材料具有一定的抗变形链球菌和抗白色念珠菌的效果,当树脂基托中抗菌剂的浓度达到3%时,即可达到满意的抗菌效果。

无机纳米颗粒作为新型的抗癌药物为肿瘤治疗提供了新的思路。研究人员用gd@c82(oh)22处理得肝癌的小鼠,在10.7mol/kg的注射剂量下能有效地抑制肿瘤生长,同时对机体不产生任何毒性。其抑瘤效应不是通过纳米颗粒对肿瘤的直接杀伤起作用,而是可能通过激活机体免疫来实现对肿瘤的抑制作用。纳米羟基磷灰石在体外对恶性肿瘤细胞产生明显的抑制作用,而对正常细胞作用甚微,可望通过进一步的研究获得一种区别于传统的化疗药物的纳米无机抗癌药物。此外,有的物质纳米化后出现新的治疗作用,如二氧化钛纳米粒子可抑制癌细胞增殖;二氧化铈纳米颗粒可以清除眼中的电抗性分子并防治一些由于视网膜老化而带来的疾病。

3.2.2 纳米药物载体

纳米生物技术是纳米技术和生物技术相结合的产物,它即可以用于生物医学,也可以服务于其它社会需求。所包含的内容非常丰富,并以极快的速度增加和发展,难以概述。

3.3.1生物芯片技术

生物芯片是在很小几何尺度的表面积上,装配一种或集成多种生物活性,仅用微量生理或生物采样,即可以同时检测和研究不同的生物细胞、生物分子和dna的特性,以及它们之间的相互作用,获得生命微观活动的规律。生物芯片可以粗略地分为细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即dna芯片)等几类,都有集成、并行和快速检测的优点,已成为21世纪生物医学工程的前沿科技。

近2年,已经通过微制作(mems)技术,制成了微米量级的机械手,能够在细胞溶液中捕捉到单个细胞,进行细胞结构、功能和通讯等特性研究。美国哈佛大学的教授领导的研究人员,发展了微电子工业普遍使用的光刻技术在生物学领域的应用,并研制出效果更好的软光刻方法。以此,制出了可以捕捉和固定单个细胞的生物芯片,通过调节细胞间距等,研究细胞分泌和胞间通讯。此类细胞芯片还可以作细胞分类和纯化等。它的功能原理非常简单,仅利用芯片表面微单元的几何尺寸和表面特性,即可达到选择和固定细胞及细胞面密度控制。

美国圣地亚国家实验室的发现实现了纳米爱好者的预言。正像所预想的那样,纳米技术可以在血流中进行巡航探测,即时发现诸如病毒和细菌类型的外来入侵者,并予以歼灭,从而消除传染性疾病。

一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期dna损伤。

3、 4组织修复和再生医学中的纳米材料

将纳米技术与组织工程技术相结合,构建具有纳米拓扑结构的细胞生长支架正在形成一个崭新的研究方向。相对于微米尺度,纳米尺度的拓扑结构与机体内细胞生长的自然环境更为相似。纳米拓扑结构的构建有可能从分子和细胞水平上控制生物材料与细胞间的相互作用,引发特异性细胞反应,对于组织再生与修复具有潜在的应用前景和重要意义。将纳米纤维水凝胶作为神经组织的支架,在其中生长的鼠神经前体细胞的生长速度明显快于对照材料。向高分子材料中加入碳纳米管可以显著改善原有聚合物的传导性、强度、弹性、韧性和耐久性,同时还可以改进基体材料的生物相容性。研究发现,随着复合物中碳纳米管含量的增加,神经元细胞和成骨细胞在复合材料上的黏附与生长也越来越活跃,而星形细胞和成纤维细胞的活性则呈现同等程度的下降。研究人员设计的人造红细胞输送氧的能力是同等体积天然红细胞的236倍,可应用于贫血症的局部治疗、人工呼吸、肺功能丧失和体育运动需要的额外耗氧等。研究人员成功合成了模拟骨骼亚结构的纳米物质,该物质可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模数匹配,不易骨折,且与正常骨组织连接紧密,显示出明显的正畸应用优势。

纳米自组装短肽材料rada16-i与细胞外基质具有很高相似性,rada16-i纳米支架可以作为一种临时性的细胞培养人工支架,它能很好地支持功能型细胞在受损位置附近生长、迁移和分化,因而有利于细胞抵达伤口缝隙,使组织得以再生。有研究人员利用rada16-i纳米支架修复了仓鼠脑部的急性创伤,并且恢复了仓鼠的视觉功能。rada16-i形成的水凝胶可用作新型的简易止血剂,用于多种组织和多种不同类型伤口的止血。

4、我国发展纳米生物学和纳米医学的现状和发展策略

目前,我国在纳米生物和医学领域内的研究基础还比较薄弱,通过采取各种激励措施和各种研究计划的实施,特别是国家自然科学基金委的纳米技术重大研究计划对纳米生物和纳米医学项目的支持,我国在纳米生物和纳米医学方面的研究状况有了很大的改善,生物、医学界的许多院、所相继建立了有关纳米技术的研究室,如中国医学科学院基础医学研究所、军事医学科学院毒物药物研究所和生物物理研究所等都设立了纳米研究室,初步形成了一只较强的研究队伍。近年来,来自化学、物理、信息、药物、生物和医学等领域的科学家通过几次研讨会进一步明确了纳米生物和纳米医学领域的研究方向和内容,并建立了较密切的合作。我国在纳米生物和纳米医学的研究领域也涌现了一批极具特色的研究成果,如在生物传感器、生物芯片、新型药物载体和靶向药物、新型纳米药物剂型、新造影剂、重大疾病的机制、纳米材料的应用和生物安全性及重大疾病预防和早期诊断与治疗技术等方面。但是,这些研究的水准与国际先进水平还有相当的差距,离国家、社会的需求也有相当远的距离。

纳米医学工程的建立不仅是因为有其迫切的需要,而且也因为有了实现的可能。如今,纳米科技在国际上已崭露头角,世界各发达国家纷纷开展纳米科技的研究。在我国,科技界对纳米科技的重要性有了共识,纳米科技研究已取得引人注目的成果。学科发展和社会需要是推动社会发展的巨大动力,学科发展可以创造新的需求,社会需求可以促进学科向深度和广度发展。纳米生物医学工程正在出现,我们无力将它阻挡。虽然它的广泛应用尚有待时日,并潜在危险,但若没有它,我们现在面临的许多生物医学工程问题就不可能得到满意的解决。

9、10):2-5.[14]奇 云。纳米化学研究进展[j]。现代化工,1993,13(8):38-39.[15] 华中一。纳米科学与技术[j]。科学,2000,52(5):6-10.。

纳米材料心得体会篇二

纳米材料是指至少有一维尺寸小于100纳米的材料,由于其具有超大的比表面积和卓越的物理、化学和生物性能,因此被广泛应用于材料、能源、环境、医药等领域。在过去一年里,我参与了一项关于纳米材料的研究项目,通过实验和文献调研,收获颇丰。在此,我将分享我对纳米材料的心得体会。

第二段:体验经历

在研究项目中,我参与了纳米银材料的制备及应用实验,研究了其在抗菌、光催化降解有机污染物等领域的应用。同时,我也进行了大量的文献调研,深入了解了纳米材料的物理化学性质和新型应用领域。这些经历让我领略到了纳米科技的无限魅力和广泛应用前景。

第三段:纳米材料的优势

相比传统材料,纳米材料具有许多优势。首先,其具有高表面积、高扩散性和高表观反应速率等特性,因此具有更高的效率和活性。其次,纳米材料具有量子效应、表面等离子体共振和表面纳米结构等特性,使其具有了多种新的性能和应用。此外,纳米材料的可调性、形态可控性和表面修饰性等特性,使其能够满足更多的应用需求。

第四段:纳米材料的应用前景

随着纳米技术的不断发展和创新,纳米材料的应用前景越来越广阔。在材料领域,纳米材料已经被应用于高强度材料、耐磨材料、环保材料等多个领域。在能源领域,纳米材料被应用于太阳能电池、燃料电池、储能材料等多个领域。在医药领域,纳米材料被应用于靶向药物化疗、分子成像等多个领域。在环保领域,纳米材料被应用于水处理、大气污染治理等多个领域。可以预见的是,纳米材料将会在更多领域得到应用和推广。

第五段:结语

纳米科技是一项世界科技领域的重大突破和发展,纳米材料也因其优异的性能和广泛的应用前景而备受关注。我相信,在不久的将来,纳米材料将发挥更重要的作用,引领着我们走向更美好的未来。

纳米材料心得体会篇三

本文主要研究了污染物的光催化降解原理, 进一步分析了光催化纳米材料在环境保护工作中的应用, 同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究, 希望对这一工作的开展提供一定的指导作用。

光催化; 纳米材料; 环境保护;

工业废水和废气中都含有较多的毒害物质, 比如有机磷农药或是二氯乙烯等, 这些物质对于人体的影响都是十分明显的。传统的水处理方式, 比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难, 效果并不理想, 所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式, 实现对传统方法处理后水中的残留物质进行更有效的降解。1976年, 科学家在对紫外线光照射下对纳米ti o2进行了研究, 发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。当前, 已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解, 尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候, 这项技术更是能发挥出前所未有的技术优势。

光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料, 是一种特殊的电子结构。和金属相比, 这种半导体存在明显的不连续性, 在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带, 所以当二者产生的能量大于光照射的时候, 在价带上的电子就会被转移到导带上, 最终在半导体表面形成具备高活性的电子[1]。

在光催化反应中, 获取光激发所出现的空穴, 和对给体或是受体产生的作用也是有效的。所以在实际工作中为了确保光催化反应能更有效的进行, 就应该适当降低电子和空穴之间的简单复合。

(一) 光催化纳米技术在污水处理中的应用

传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除, 但是对于浓度较低的可溶性物质却很难进行有效的处理, 并且由于这项工作的工作效率比较低, 花费的经济成本比较高, 所以很多时候并不能进行有效的处理。但是借助纳米材料的光催化方法, 就可以将很多难以降解而定污染物进行合理转变, 从而将原本水中的污染物转化为水分子或是二氧化碳等无污染的分子物质。

比如在对有机废水的处理环节中, 光催化纳米材料就可以将水中的绝大多数有机污染物进行转化, 使其成为无污染的物质, 比如可以将酸。表面活性剂等有机污染物进行氧化, 使其转变为水或二氧化碳等无害的物质。借助纳米材料可以的对物质表面性能进行转变, 通过这种方式对水中纳米的分散性进行优化。从而实现对光激发作用下产生的电子和空穴复合问题进行抑制, 进一步实现对催化活性的提升[2]。

再比如对无机废水的处理环节中, 由于无机物在纳米粒子表面存在明显的光化学活性, 因此光催化纳米材料后所出现的电子和空穴都可以对高氧化状态的物质进行还原, 也就是借助此种方式实现对无机物污染的有效消除。

(二) 光催化纳米技术在大气污染治理中的应用

对大气污染产生影响的主要成分就是二氧化硫、一氧化碳等物质, 这些气体如果长期存在于空气中必然会对人体的健康造成不利的影响。光催化剂可以和一些气体吸附剂进行有效结合, 从而更有效的实现对降解浓度的有效降低。

将一些对日光有相应的半导体纳米材料涂抹在墙壁或是其他合理的位置上可以形成空气清洁剂的作用, 而二氧化硫、一氧化碳等物质吸附在上面的时候, 就可以在光的作用下被转变为无害物质, 这种方式对于去除臭气的影响也是十分重要的环节[3]。纳米对于氟利昂具备较强的光催化活性, 因此将这以技术进行融合后, 可以在表面对酸性进行催化, 通过这种方式获取较高的光催化活性作用, 这对于物质稳定性的提升也将起到一定的帮助作用。

此外, 纳米技术还能对室外的气象有机污染物进行分解, 比如在紫外线的照射下, 纳米材料可以将室内装饰建材中产生的甲醛、氯乙烯等物质进行有效分解。将活性炭纤维作为重要载体的过渡金属离子中适当进行纳米材料光催化剂的融合, 通过此种方式将紫外线光照射下浓度更低的甲醛进行或降解, 但是这种技术手段对于浓度高的污染物降解效果比较差, 同时由于使用时间的增加, 最终催化剂的活性也将大大降低, 最终甚至会出现活性的完全消失。

综上所述, 光催化纳米材料在当前环境保护中有着越来越显着的应用, 不仅可以对难处理的污染物进行有效处理, 同时还能借助自身的吸附作用对低浓度的有害物质进行分解。在当前光催化纳米技术的不断发展过程中, 环境保护工作效率和质量也必然会得到显着提升。总而言之, 当前我国环境保护工作已经受到了越来越多的影响, 甚至对人们的身体健康产生了威胁, 所以在此种背景下, 更需要加强对相关技术的研究, 不断为我国环保工作的顺利开展提供帮助作用, 实现可持续工作的顺利进行。

纳米材料心得体会篇四

纳米材料是一种特殊的材料,它的尺寸在1到100纳米之间。与传统材料不同的是,纳米材料的物理、化学和生物学性能都与其尺寸有关。纳米材料有很多种,包括纳米颗粒、纳米线、纳米管、纳米板等。纳米材料已经应用于很多领域,例如电子、生物医药、化学、能源等。

第二段:为什么纳米材料重要?

纳米材料的独特性质使得它在各个领域都有着广泛的应用。在电子领域,纳米材料可以被用作纳米电子器件、纳米储存器等;在生物医药领域,纳米材料可以用于制造新型药物、疫苗等;在化学领域,纳米材料可以用于催化和吸附等反应;在能源领域,纳米材料可以用于制造太阳能、燃料电池等能源材料。因此,研究纳米材料具有重要的实际意义和应用价值。

第三段:学习纳米材料的过程中学到了什么?

在学习纳米材料的过程中,我了解了纳米材料的定义、性质和制备方法。学习纳米材料需要掌握许多基础理论,例如晶体学、材料科学等。同时,还需要具备先进的实验技术和设备,例如扫描电镜等。

不仅如此,学习纳米材料还需要具备严谨的科学态度和创新精神。每一项实验的结果都需要精确的控制和测量,同时还需要不断追求新的研究方向和发现未知的现象。学习纳米材料的过程既困难又令人兴奋,需要我们不断提升自己的科学素养和实验技能。

第四段:纳米材料给我带来了什么?

通过学习纳米材料,我获得了许多知识和经验。我熟悉了许多新的实验方法和技术,例如扫描电镜、透射电镜等。我还学会了如何收集和分析实验数据,如何撰写学术论文等。这些知识和经验对我的学术研究和未来的职业生涯都有着重要的帮助。

更重要的是,学习纳米材料让我更加关注科学研究的发展方向和应用前景。我相信纳米材料的应用前景将会越来越广泛,为人类社会带来更多的福利和进步。作为一名科学研究者,我将继续关注纳米材料领域的发展和创新,为实现科学的理想和目标而不断努力。

第五段:结语

学习纳米材料是一段令人兴奋和有意义的旅程。通过不断的探索和实践,我对科学的理解和认识更加深刻和透彻了。我相信,只有在不断的学习和实践中才能成长为一名真正的科学研究者,创造出更多的价值和贡献。相信自己,相信科学,我们可以共同创造出美好的未来。

纳米材料心得体会篇五

纳米科技是一项现代科技的重要分支,其逐渐应用于各个领域中,并且在体育、汽车、生命科学等领域中产生了强大的影响。其中最重要的贡献之一是纳米材料的出现。纳米材料,这种具有微观特性的新型材料,其尺寸小于 100 纳米,可以展现出与传统物质截然不同的特点。

第二段:纳米材料的优势

同样的材料,当材料的尺寸缩小到纳米级别时,它们的物理、化学、光电等性质会发生明显的改变,这种改变是由于材料尺寸的影响造成的。由于具有这些显著的优势,纳米材料在各个领域中都有着极其广泛的应用范围。比如,在医学领域,它们可以被用作药物传输媒介;在能源领域,它们可以被用于太阳能电池、储能材料、低成本燃料电池以及各类传感器等。

第三段:纳米材料的挑战

然而,纳米材料的应用也面临着很多挑战。比如,纳米材料的生产成本较高、生产和使用的安全难以保证以及在环境中的处理和回收难度等。此外,还有一些纳米材料具有毒性,可能导致各种健康问题。这些问题意味着在纳米材料的生产过程中,必须采取很多安全措施并且对实际的使用情况进行监测,以确保它们不会对人类健康和环境造成危害。

第四段:我的体会

学习纳米材料的这段日子中,我对其中的挑战和应用有了更深刻的认识。尤其是,在对纳米材料的生产成本和应用进行了了解后,我认为我们需要在可持续发展和生产效率间取得平衡。在应用纳米材料的时候,我们必须时刻考虑到它们的可用性和安全,确保它们能够带来更多的便利而不是损害。

第五段:结语

纳米材料的优点和缺点都非常复杂。因此,我们必须始终意识到它们的潜在风险,以及在推进时应该实现一个可持续的发展,因为纳米材料对我们生活的影响远远超出了我们的想象。总之,我相信通过大家的不断努力,纳米材料一定会为我们的生活带来巨大的好处。

纳米材料心得体会篇六

摘要:目前世界上上转换纳米荧光材料正处在发展阶段,材料的选择和合成有待于深入细致的研究。本文对上转换发光纳米晶的选择和合成做了系统的讨论。

关键词: 纳米材料 发光材料 上转换发光 荧光材料 双光子吸收 纳米晶

近年来,人们开始对荧光标记材料产生了浓厚的兴趣,特别是随着纳米技术的发展,能够进行生物标记的无机纳米晶成为人们追逐的热点,但是由于生物背底同样会产生荧光从而对荧光检测形成干扰,于是不会产生背底干扰的稀土上转换纳米发光标记材料引起了人们的注意。

1.1纳米材料简介

纳术概念是1959年木,诺贝尔奖获得着理查德。费曼在一次讲演中提出的。他在“there is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(stm),原子力显微镜(afm)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。 其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0a。纳米科学与技术(nano-st)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。在这里就不一一介绍了。

1.2上转换纳米材料介绍

稀土上转换发光材料通过多光子机制把长波辐射转换成短波辐射称为上转换。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。由此可见上转换发光的本质是一种反stokes发光,因此,也称上转换发光为反stokes发光。早在1959年,就出现了上转换发光的报道。用960nm的红外光激发多晶zns,观察到了525nm绿色发光。上转换发光的机理可以归结为4种情况:

(1)单离子的步进多光子吸收,这实际上是激发态吸收(esa)的过程。

(2)直接双光子吸收。这也是一个单离子过程,能量为e1和e2 (e1与e2可以相等也可以不相等)的两个光子从一个虚拟的中间量子态被同时吸收终态e3=e1+e2。

(3)多个激发态离子的共协上转换。

(4)光子雪崩吸收上转换。

2.1 共沉淀法

组分体系的制备就可能存在一些问题。冈为它对于原料的选择会造成一定的困难,同时还要求各种组分具有相同或相近的水解或沉淀条件,这样必将对所合成的多组分体系有一定的要求,从而限制了它的使用。.iohannes hampl等人用高温流化床合成出了具有较好分散性的er,yb共掺的氧硫化物。合成时,将er,yb和y的硝酸盐用尿素共沉淀,得到的沉淀在840℃下通过h2s和水蒸气,最后在1500℃的流化床中用ar气保护活化,这样得到了尺寸大约400nm的粒子。硫化物的粒子形态较好,一般为圆形,但是要求较高的活化温度(1500~),在此温度下粒子容易粘连,所以在硫化床中活化,这样加大了合成的难度。

2.2水热法

水热法也是近几年来研究无机发光材料中发明的又一新兴 的合成方法。此法主要是在特制的反应釜(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境从而在一定温度和压力下,使物质在溶液中进行化学反应的一种无机制备方法。在水热法的基础上,以有机溶剂代替水,采用溶剂热反应来制备发光材料是水热法的一种重大改进,可以适用于一些非水反应体系的制备,从而打一大了水热技术的适用范围。

上转换纳米微粒的个最重要标志是尺寸与物理的特征量相差不多,例如。当上转换纳米粒子的粒径与超导相干波长、玻尔半径以及电子的德布罗意波长相当时,小颗粒的量子尺寸效应十分显著。

与此同时,大的比表面使处于表面态的原子、电子与处于小颗粒内部的原子、电子的行为有很大的差别,这种表面效应和量子尺寸效应对纳术微粒的光学特性有很大的影响。甚至使纳米微粒具有同样材质的宏观犬块物体不具备的新的光学特性。

例如:

1.宽频带强吸收。纳米氮化硅、碳化硅及氧化铝粉对红外有个宽频带强吸收谱。这是因为纳米粒子大的比表面导致r平均配位数下降,不饱和键和悬键增多,与常规大小材料不同,没有一个单一的,择优的键振动模.而存在个较宽的键振动模的分布.在红外光场作用下它们对红外吸收的频率也就存在个较宽的分布,这就导致了纳米粒于红外吸收带的宽化。

2.吸收带蓝移现象。这可能由于两方面原因,一是量子尺寸效应,由于颗粒尺下降能隙变宽,这就导致光吸收带移向短波方向,ball等对这种蓝移现象给出了解释:已被电子占据分子轨道能级与未被电子占据分子轨道能级之间的宽度(能隙)随颗粒直径碱小而增大.这是产生蓝移的根本原因。这种解释对半导体和绝缘体都适用。另一种是表面效应。由于纳米微粒颗粒小,大的表面张力使晶格畸变,品格常数改变。对纳米氧化物和氮化物小粒于研究表明第一近邻和第二近邻的距离发生变化。键长的改变导致纳米微粒的键本征振动频率改变,结果使光吸收带发生移动。 3.量子限域效应。半导体纳术微粒的半径rab(激子玻尔半径)时,电子的平均自由程受小粒径的限制,局限在很小的范围,空穴很容易与它形成激子,引起电子和空穴波函数的重叠,这就报容易产生激子吸收带。

当上转换纳米微粒的尺寸小到一定值时可在定波长的光激发下发光。1990年,日本佳能研究中心的h .tabagi发现,粒径小于6nm的硅在室温下可以发射可见光。随半径减小,发射带强度增强并移向短波方向。当粒径大干6nm时,这种光发射现象消失。tabagi目认为硅纳米微粒的发光是载流子的量子限域效应引起的。brus认为,大块硅不发光是因为它的结构存在平移周期性,由平移对称性产生的选择定则使得大尺寸硅不可能发光,当硅粒径小到某程度时(6nm).平移对称性消失,因此出现发光现象。

1 电沉积纳米晶材料技术 屠振密[等]编著 2008

2 发光材料与显示技术 徐叙瑢主编 2003

3 有机发光材料、器件及其平板显示 李文连著 2002

8 杨剑 滕凤恩 《材料导报》 1997 第2期

9 纳米材料及其技术的应用前景 张中太 2000 材料工程

10 李彦 施祖进 纳米团簇的超分子自组装 [期刊论文] -化学进展 11 张立德 纳米材料的发展 1994(03)

纳米材料心得体会篇七

纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

1.在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子――空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米tio2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的tio/sio2负载型光催化剂。ni或cu一zn化合物的'纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

2.在涂料方面的应用

[1][2][3]

相关范文推荐
  • 09-21 供电所生产工作计划(实用7篇)
    计划是人们为了实现特定目标而制定的一系列行动步骤和时间安排。我们该怎么拟定计划呢?下面是小编为大家带来的计划书优秀范文,希望大家可以喜欢。供电所生产工作计划篇一
  • 09-21 最新家具购买补充协议合同 家具补充协议合同(大全10篇)
    随着人们对法律的了解日益加深,越来越多事情需要用到合同,它也是减少和防止发生争议的重要措施。那么一般合同是怎么起草的呢?下面是小编为大家带来的合同优秀范文,希望
  • 09-21 最新定点采购文具用品合同(模板5篇)
    生活当中,合同是出现频率很高的,那么还是应该要准备好一份劳动合同。那么合同应该怎么制定才合适呢?下面是小编为大家整理的合同范本,仅供参考,大家一起来看看吧。定点
  • 09-21 2023年店长本周工作总结(通用8篇)
    总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
  • 09-21 2023年租赁建筑工具能赚钱吗 车库出租合同(大全8篇)
    无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
  • 09-21 农村信用社年度工作总结 农村信用社度工作总结(大全6篇)
    总结是对某种工作实施结果的总鉴定和总结论,是对以往工作实践的一种理性认识。总结怎么写才能发挥它最大的作用呢?以下我给大家整理了一些优质的总结范文,希望对大家能够
  • 09-21 医院思想政治工作总结和计划(实用5篇)
    在现代社会中,人们面临着各种各样的任务和目标,如学习、工作、生活等。为了更好地实现这些目标,我们需要制定计划。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?
  • 09-21 2023年上半年社区两委工作总结会(实用7篇)
    围绕工作中的某一方面或某一问题进行的专门性总结,总结某一方面的成绩、经验。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下是小编精心整理的总结范文,供大家
  • 09-21 酒厂买卖合同 简单的买卖合同优选(通用6篇)
    在生活中,越来越多人会去使用协议,签订签订协议是最有效的法律依据之一。合同的格式和要求是什么样的呢?下面我给大家整理了一些优秀的合同范文,希望能够帮助到大家,我
  • 09-21 2023年工程技术管理工作总结报告(汇总6篇)
    “报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以